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Abstrac~This paper presents a numerical method of evaluating view factors between planar surfaces 
which is computationally efficient and quite general to program on a computer. The method, which is 
based on Gaussian quadrature to perform the contour integration is extended to surfaces with curved 
boundaries. The performance of various quadrature formulas viz. trapezoidal, Simpson and Gaussian, 
have been compared for performance by applying them to sample problems. The Gaussian quadrature 
method with nonlinear transformation to map the boundary has been found to be the most accurate, 
computationally faster and very general. As an application, the shape factor between two elliptic surfaces 

has been evaluated. 

INTRODUCTION 

In radiation analysis of many engineering problems, 
diffuse approximation is common. In such situations 
the view factor, which is the fraction of diffuse radi- 
ation leaving the surface and reaching the interacting 
surface, plays an important role. The solution for 
radiative transfer coupled with other modes of heat 
transfer in enclosures is normally iterative due to the 
nonlinear nature. Usage of inaccurate view factors 
magnifies the errors in the final solution [1]. The view 
factors for many simple geometries have been cal- 
culated analytically and tabulated in standard texts, 
e.g. [2, 3]. Accurate determination of view factors by 
numerical means has been a topic of research, since 
analytical solution is not possible for many of the 
geometries of practical interest. 

The importance of numerical evaluation of view 
factors is apparent from earlier papers, e.g. [6-11]. 
Chung and Kim [6] applied the finite element method 
to evaluate view faclors. As was pointed out by Ambi- 
rajan and Venkateslhan [9], the results obtained were 
not convincingly accurate even with a fine mesh. In 
an interesting paper by Shapiro [7], accuracy and com- 
putational time were compared for the area integral 
method and line integral method applied to a problem 
of two directly oppc,sed squares (test problem 1 in this 
paper). Recently, Byrd presented view factor algebra 
for two arbitrarily sized non-opposing parallel rec- 
tangular surfaces. The view factor between a small 
rectangular plane to a triangular surface per- 
pendicular to the rectangular plane was calculated by 
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Noboa et al. [10] using shape factor algebra. This 
situation was similar to the one encountered in radi- 
ative analysis of attics. In this work, the common edge 
which poses singularity was conveniently avoided. 
The most important observation which is made from 
these works is that there still does not exist a general 
numerical method of computing view factors accu- 
rately for any geometry. In a more recent paper by 
Ambirajan and Venkateshan [9], they presented a 
more general method which uses a Romberg inte- 
gration formula based on the trapezoidal rule. An 
analytical formula was presented for the situation 
where the surfaces have a common edge. A method 
of treating curved surfaces was also presented. After 
a detailed survey of previous work, it is felt that it is 
possible to come up with a general method of diffuse 
view factor evaluation which will be computationally 
efficient and which can be applied to any geometry (at 
least for plane surfaces) with desired accuracy. 

CONTOUR INTEGRATION METHOD 

It has been shown by Sparrow [5] that the view 
factor between two surfaces can be given by the fol- 
lowing formula, which has been popularly referred to 
as the contour integration formula in text books on 
radiation. 

F i - 2 - 2 n A 1  , l n sd r l ' d r2 .  (1) 
2 

In this, the subscripts 1 and 2 refer to the two 
surfaces under consideration, s is the distance between 
two line elements on each contour and dr is the 
elemental length vector. This equation is the trans- 
formed form of the definition of the view factor 
between surfaces 1 and 2 using Stoke's theorem which 
is given by 
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NOMENCLATURE 

A area of the surface 
A and B semi major and minor axes of the 

ellipses in the application problem. 
axj, bxn, c.~1 constants in the transformation 

for surface 1 
F diffuse view factor 
L length of each side in test problems 1 

and 2 /~ 
Lc length of the common edge in test 

problem 2 
N number of elements on each contour 

defined in the text. 
R radius of the circle in test problem 3 
r length vector 

s distance between two points on each 
contour 

x,y, z Cartesian coordinates of a point on 
the surface/contour. 

Greek symbols 
F contour 

angle between the normal to the 
surface and the line connecting two 
elemental surfaces 

)~, q, ~ transformed coordinates of a point on 
the surface/contour. 

Subscript 
1,2 refer to surfaces 1 and 2, respectively. 

FI 2 = -~llfAfac°sfllc°sfl2dAIdA2~ 2 rcs 2 (2) 

The accuracy of the view factor evaluated using 
the above formulas depends on the efficiency of the 
numerical scheme used. The obvious advantage of 
transforming equation (2) to equation (1) is that 
quadruple integration has become a double contour 
integration. An extensive comparison of com- 
putational times needed to evaluate the area integral 
in equation (2) and the line integral in equation (1) 
has been made by Shapiro [7] who concluded that the 
area integral method needs orders of magnitude of 
more computation time than the line integral method. 
There is another major advantage in doing so, which 
will be discussed later in the paper. 

Numerical evaluation of the contour integral in 
equation (1) consists of dividing the contours of the 
two surfaces into a finite number of line elements. The 
contribution of all the elements on both the contours 
to the integral is added up to get the view factor 
between the two surfaces. A closer observation of 
equation (1) reveals that the accuracy in computing 
the view factor depends on : 

(1) How closely one can approximate the variation 
of In (s) within the elemental intervals. It should be 
noted that the function In (s) varies very seriously 
when the contours are very close and becomes - o o  
where two contours touch each other. 

(2) How closely one can follow the contours. For 
surfaces with straight contours this does not impose 
any error as the traditional numerical integration tech- 
niques follow the straight contours exactly. 

With reference to the above points, various numeri- 
cal integration methods are compared in the follow- 
ing. 

QUADRATURE FORMULAS 

Consider two line elements on the contours of each 
surface as shown in Fig. 1. Three points are shown on 

/O (X23 , Y23, Z23) 

2 (X2, Y2, Z2) o"  
4 

(x~, y~, zz~) . . / ]  

/ ( n, yn, z0 
,o (Xlb Ynn, zll) I 

Fig. I. Sketch showing three points on each contour for 
contour integration formula. 

each of the elements. For this situation, equation (1) 
can be expanded as 

x In (s) dy~ dy2 + In (s) dz~ dz2 (3) 
II 2! 

where s = x / ( x l - x 2 ) Z + ( y l - y 2 ) Z + ( z l - z 2 )  z and 
AFj 2 is the line integral contribution from the two 
elements considered. The view factor F1-2 will be 
the sum of such contributions from each element on 
surface 1 to each element on the surface 2. 

Three methods are considered in this paper to evalu- 
ate the integrals in equation (3), viz. (1) trapezoidal, 
(2) Simpson and (3) Gaussian quadrature. These are 
standard techniques of numerical quadrature and, 
hence, are only salient features which are relevant to 
the present problem are highlighted here. 

Trapezoidal method ( TZM) 
Trapezoidal method is the simplest of all the quad- 

rature formulas and needs two points on each contour 
element. This involves linear approximation of the 
function, i.e. In (s) here within the limits. For a single 
integration it needs evaluation of the function to be 
carried out twice and hence four times for a double 
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integration. This method has been used in ref. [9] to 
perform Romberg integration. 

Simpson ' s  m e t h o d  ( S I M )  
The function to be: integrated is approximated by a 

quadratic function through three points within the 
limits of integration. Each integration requires evalu- 
ation of function nine times. 

Gaussian quadrature  
Gaussian quadrature is the most accurate method 

for a given number  of points on the elements. An n- 
point quadrature formula approximates the function 
by ( 2 n -  1)th degree 9olynomial. A one-point formula 
(GAUSS1) evaluates the integral as accurate as the 
TZM with just one point on each element. A two- 
point formula (GAUSS2) approximates the function 
with a polynomial of degree three and a three-point 
formula (GAUSS3) with degree five. To get the same 
accuracy, the SIM needs four and six points, respec- 
tively. In general, for a desired accuracy, SIM needs 
four times more computat ion time compared to the 
Gaussian method. 

The above comparison is true for surfaces with 
straight contours. As mentioned earlier, additional 
error is introduced due to the approximation of the 
contour as a straight line between the points. Very 
large computat ion times are required with the above 
methods if the contours are curved. 

Another  complication is when the two surfaces 
share a common edge. In this case, the distance 
between any two pc ints on each contour is zero and 
hence numerical integration becomes impossible. 
However, there exists an exact integration formula as 
shown in ref. [9] which is given by 

2nA~ A F~ -2 = L 2 (1.5 -- In L¢). (4) 

This is the contribution to the overall view factor 
from the element on the common edge of the two 
surfaces. All that it needs is the length of the common 
edge. 

Gaussian quadrature with nonl inear t rans format ion  
The Gaussian quadrature needs the integration lim- 

its to be between - 1 and + 1 and hence demands a 
transformation of global coordinates to local ones. 
One obvious way is a linear transformation which 
has been used presently for GAUSS1, GAUSS2 and 
GAUSS3. In this, the Gaussian points do not  exactly 
lie on the contour,  if the contours are curved. An 
alternative to make the integration follow the contour 
more accurately is by use of higher order trans- 
formation. This is s:imilar to the use of isoparametric 
elements in the finite element method. In the present 
study, the results are reported for only a quadratic 
transformation. Though in principle, higher order 
transformation improves the accuracy, it is found that 
the improvement is better with an increase in the num- 
ber of elements than with the order of transformation 

beyond the quadratic. Referring to Fig. 1, the global 
coordinates of the points on the two contours are 
transformed using the following : 

x l  = ax~22 ÷ b x , ~ l  ÷¢x ,  

z, = a _ - ~ + b : ~ l  +c:~ (5) 

for contour 1 and a similar one for contour 2. The 
constants 

ax, , ax:, • • • 

are evaluated using the limits of the transformed vari- 
ables which are between - 1  and + 1. The inter- 
mediate values of ;G t/, etc., i.e. ~2, rh2, etc. can be 
anything arbitrary between - 1 and + 1 and are selec- 
ted as zero for convenience. For this transformation, 
three points on each contour are needed and must be 
located on the contours. 

With the transformed variables, equation (3) can 
be recast as 

2nAIAFI-2  = i  11 

+ I+l 1 

f ~ (2a~, X l + bx,) In (s) dxl dx2 
1 

f +l (2ay,~/i +b~.) In (s) d~h dq2 

I +l  

_ (2a~,~, + b z , ) l n ( s ) d ~  d~2. 

(6) 

It can be observed that the function In (s), with the 
same expression for s as earlier, has been given weights 
which depend on the location on the contours. This is 
again similar to the Jacobians appearing during the 
transformation in the finite element methods. There 
is an additional computational effort because of these 
weights. However, this is very well compensated for 
by not having to evaluate In (s) for each of the three 
integrals. The two-point and three-point Gaussian 
quadrature with this transformation is referred to as 
GAUSS2N and GAUSS3N, respectively, in the fol- 
lowing : 

It should be noted that the motivation for this work 
is to evolve a procedure to compute view factors by 
combining the advantages of 

(1) the possibility of a transformation of an area 
integral to a contour integral which is computationally 
more economical ; 

(2) the existence of a closed form formula for the 
situation of two surfaces with a common edge ; 

(3) the Gauss quadrature formula which is the 
most accurate one for the same computational  effort ; 
and 

(4) a higher order transformation which will allow 
the integration to follow the contour accurately. 
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(TEST 1 ) 
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Test problem 2 
(TEST2) 

2A 

Test problem 3 Application problem 
(TEST3) (APPN) 

Fig. 2. Schematic of the test problems and the application 
problem. 

RESULTS AND DISCUSSION 

For  the purpose of  comparison of  the performance 
of  various methods mentioned earlier, three test prob- 
lems are considered (refer Fig. 2), viz. (1) two parallel 
square plates separated by a distance equal to the side 
(TEST1), (2) two square plates with a common side 
with an included angle of  90 c' (TEST2), and (3) two 
parallel circular plates separated by a distance equal 
to the diameter (TEST3). Finally, the view factor 
between two opposing elliptic surfaces has been evalu- 
ated as an application (APPN) of  the present method. 
All the computations are performed on a PC/AT-386 
using Microsoft  For t ran compiler. 

Test problem 1 
The first part of  Table 1 shows results for TEST1. 

In this, N is the number of  line elements on each side 
of  the square. For  this case alone, the number of  
elements N is varied to get a given accuracy up to eight 
decimal places. This is to compare the computational  
time required for a desired accuracy. However, the 
results for T Z M  and GAUSS1 require very large N to 
get the values accurate up to eight decimal places. In 
fact, it is found that it is not always possible to get a 
high accuracy using these methods, as truncation 
errors creep in as N increases. Computationally,  this 
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case is the simplest of  all cases considered here, or  
earlier by other researchers [6, 7, 9]. To get the same 
order of  accuracy SIM needs 30 elements on each side, 
and 10 and 5, respectively, by GAUSS2  and GAUSS3.  
Computat ional  efficiencies can be seen better in the 
CPU time column. GAUSS3 gives a value up to nine 
digit accuracy within 0.7 s. The A C C U R A T E  value is 
computed by taking 100 elements on each side and 
using GAUSS3.  

Test problem 2 
This case poses some challenge because of  the com- 

mon edge shared by the two surfaces. The integral, 
whether in equation (1) or (2), becomes singular on 
this line. For  this case the value of  N is taken to be 
100 for all the methods. The accuracy in view factors 
and CPU time required can be compared from Table 
1. The A C C U R A T E  value for this case alone has 
been computed using four-point quadrature formula. 
GAUSS3 gives the best value with a computat ion time 
of  two minutes. Chung and Kim [6] took a total of  
1600 (40 x 40) area elements on each surface, used a 
six-point Gaussian quadrature and obtained the view 
factor as 0.20255 vs the accurate value of  0.200044. It 
was suggested that by taking a greater number of  
elements the desired accuracy could be achieved. 
When the method suggested by them was actually 
tried, it was found that it is not  practically possible to 
get an accuracy of  up to eight decimal places, whatever 
may be the number of  elements and the order of  the 
quadrature formula. Also the computat ional  time 
required is of  the order of  hours. The reason for this 
is that the singularity in the area integral in equation 
(2) has not  been treated properly. Instead, it is sug- 
gested to take a greater number of  elements. The 
increase in the number of  elements reduces the 
distance, s between the elements near the common 
edge and s 2 appears in the denominator.  Other terms 
in the integral in equation (2) being constants, the 
function inside the integral varies as s ~ and hence, is 
very sensitive to s values near the singularity. Increase 
of  the mesh size does not increase accuracy after a 
particular value of  N and, in fact, it worsens. In the 
present method, the singularity is taken care of  by 
using the exact expression, equation (4). Now the 
other source of  error is due to very small values of  
distance (but not zero) s between line elements near 

Table 1. Comparison of results obtained by various methods for test problems 1 and 2 

Test problem 1 Test problem 2 
(TEST1) (TEST2) 

N Ft 2 Time (s) N FI 2 Time (s) 

TZM 100 0.199821844 55.0 100 0.2037396 54.0 
SIM 30 0.199824895 11.0 100 0.2002998 113.0 
GAUSSI 100 0.199826424 24.0 100 0.1995222 24.0 
GAUSS2 10 0.199824894 2.9 100 0.2000040 60.0 
GAUSS3 5 0.199824896 0.7 100 0.2000347 120.0 

ACCURATE 0.1998248957 0.2000438 
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Table 2. Coml?arison of results obtained by various methods for test problem 3 and application problem 
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Application problem 
Test problem 3 (APPN) 

(TEST3) F i - 
N F~ ~ Time (s) N (APPN1) (APPN2) 

TZM 100 0.17134721 4.2 100 0 .097488270  0.25413811 
SIM 100 0.17138023 7.7 100 0 .097501185  0.25420937 
GAUSSI 100 0.17139675 2.3 100 0 .097507643  0.25424502 
GAUSS2 100 0.17138023 4.5 100 0.097501184 0.25420937 
GAUSS3 100 0.17138023 8.1 100 0 .097501185  0.25420937 
GAUSS2N 100 0.17157274 1.8 100 0 .097616577  0.25447263 
GAUSS3N 100 0.17157275 3.2 100 0.097616576 0.25447260 

ACCURATE 0.171572879 0.09761666061 0.2544728046 

the common edge. The function in the line integral 
inequation (1) i.e. In (s) varies as s -  t and hence, is less 
sensitive compared to that in the area integral. That  
means that the line integral needs a lower order quad- 
rature formula for the same accuracy. This is where 
the finite element line integral method (the present 
one) becomes more attractive than the finite element 
area integral method used by Chung and Kim [6]. For  
example, a four-point Gaussian quadrature method 
for this test case needs 50 elements on each side and 
takes about 30 s of  CPU time to give an accuracy up 
to seven digits. This value is at least as accurate as 
those reported earlier [1, 4, 9]. 

Test problem 3 
TEST3 is considered to demonstrate the use of  the 

present method to compute view factors accurately 
for curved surfaces,. This case is similar to TEST1 
except that the surfaces here are curved. It can be seen 
in the Table 2 that all methods except G A U S S 2 N  
and G A U S S 3 N  give values which are way off from 
the exact one, i.e. A C C U R A T E  [2]. The results of  
G A U S S 2 N  and G A U S S 3 N  are accurate up to seven 
digits. The N in the table indicates the total number 
of  divisions of  e, ach of  the circular contours. 
G A U S S 2 N  and G A U S S 3 N  yield practically the same 
accuracy for the same value of  N, but the C P U  time 
required is almost double for the latter. But from the 
previous case, i.e. TEST2, it can be concluded that 
G A U S S 3 N  would have been more advantageous had 
the circular surfaces been touching at a point and 
inclined at an angle. The accuracy can be increased, 
either by increasing the number of  elements on each 
surface or by taking: a higher order transformation, i.e. 
higher order isoparametric line elements. The methods 
which use only linear elements (TZM to GAUSS3)  
need an exceptionally large number of  elements 
to yield results accurate up to six decimal places. 
Ambirajan and Venkateshan [9] demonstrated a 
method of  treating the curved geometries. The dis- 
cretization method suggested is apparently laborious 
and needs a solution of  non-linear algebraic equations 
which is iterative. The present method is more general, 
more logical and computationally efficient. 

Application problem 
Results are presented for two cases in Table 2. Col- 

umn APPN1 is for the case when the two elliptic 
surfaces are kept apart  by a distance equal to their 
major axis, and APPN2 is the case when separated by 
a distance equal to the minor axis. Again the number 
of  elements on each contour is taken to be 100. The 
conclusions drawn are similar to test problem 3, as far 
as the performance of  the methods is concerned. The 
A C C U R A T E  values are obtained using G A U S S 2 N  
with 400 elements on each contour. 

CONCLUSIONS 

An efficient computational  method of  evaluating 
diffuse view factors between plane surfaces has been 
presented and the performance is compared for three 
test problems. Test problem 2 is considered to show 
the power of  the present method to take care of  the 
singularity due to common edges. Test problem 3 is 
considered to demonstrate the usefulness of  the 
method when the surfaces are curved. As an appli- 
cation, the view factors for two opposing elliptic sur- 
faces have been obtained for when the surfaces are 
separated by a distance equal to the major  and minor 
axes. Based on the present work, the following con- 
clusions can be made : 

(1) The present method, which can be viewed as 
a finite element line integral method, is capable of  
computing view factors for plane surfaces which are 
located arbitrarily, straight or curved and share com- 
mon edges practically with any desired accuracy. The 
method is computationally very efficient. 

(2) Use of  higher order quadrature is rec- 
ommended when the surfaces share a common edge 
or if the surfaces are touching anywhere. 

(3) Use of higher order transformation is rec- 
ommended when the surfaces have curved contours. 
This is similar to the use of  isoparametric elements in 
finite element method. 

(4) It is found that the computat ional  effort will 
be less when the number of  elements is increased by 
quadratic transformation than when the order of  
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t rans format ion  increased. This is because a quadra t ic  
t r ans format ion  fits a pa rabo la  t h rough  three points  
and  a cubic one fits cubic pa rabo la  th rough  four 
points on the contour ,  which essentially demands  
roughly the same total  n u m b e r  of  points  on  the 
contours.  
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